6 research outputs found

    An Encoder-Decoder Based Approach for Anomaly Detection with Application in Additive Manufacturing

    Get PDF
    We present a novel unsupervised deep learning approach that utilizes an encoder-decoder architecture for detecting anomalies in sequential sensor data collected during industrial manufacturing. Our approach is designed to not only detect whether there exists an anomaly at a given time step, but also to predict what will happen next in the (sequential) process. We demonstrate our approach on a dataset collected from a real-world Additive Manufacturing (AM) testbed. The dataset contains infrared (IR) images collected under both normal conditions and synthetic anomalies. We show that our encoder-decoder model is able to identify the injected anomalies in a modern AM manufacturing process in an unsupervised fashion. In addition, our approach also gives hints about the temperature non-uniformity of the testbed during manufacturing, which was not previously known prior to the experiment

    An Encoder-Decoder Based Approach for Anomaly Detection with Application in Additive Manufacturing

    Get PDF
    We present a novel unsupervised deep learning approach that utilizes an encoder-decoder architecture for detecting anomalies in sequential sensor data collected during industrial manufacturing. Our approach is designed to not only detect whether there exists an anomaly at a given time step, but also to predict what will happen next in the (sequential) process. We demonstrate our approach on a dataset collected from a real-world Additive Manufacturing (AM) testbed. The dataset contains infrared (IR) images collected under both normal conditions and synthetic anomalies. We show that our encoder-decoder model is able to identify the injected anomalies in a modern AM manufacturing process in an unsupervised fashion. In addition, our approach also gives hints about the temperature non-uniformity of the testbed during manufacturing, which was not previously known prior to the experiment

    An Encoder-Decoder Based Approach for Anomaly Detection with Application in Additive Manufacturing

    Get PDF
    We present a novel unsupervised deep learning approach that utilizes an encoder-decoder architecture for detecting anomalies in sequential sensor data collected during industrial manufacturing. Our approach is designed to not only detect whether there exists an anomaly at a given time step, but also to predict what will happen next in the (sequential) process. We demonstrate our approach on a dataset collected from a real-world Additive Manufacturing (AM) testbed. The dataset contains infrared (IR) images collected under both normal conditions and synthetic anomalies. We show that our encoder-decoder model is able to identify the injected anomalies in a modern AM manufacturing process in an unsupervised fashion. In addition, our approach also gives hints about the temperature non-uniformity of the testbed during manufacturing, which was not previously known prior to the experiment
    corecore